Intrinsic characterization of manifold-valued generalized functions
نویسندگان
چکیده
The concept of generalized functions taking values in a differentiable manifold ([15, 19]) is extended to a functorial theory. We establish several characterization results which allow a global intrinsic formulation both of the theory of manifold-valued generalized functions and of generalized vector bundle homomorphisms. As a consequence, a characterization of equivalence that does not resort to derivatives (as provided in [11] for the scalar-valued cases of Colombeau’s construction) is achieved. These results are employed to derive a point value description of all types of generalized functions valued in manifolds and to show that composition can be carried out unrestrictedly. Finally, a new concept of association adapted to the present setting is introduced. Mathematics Subject Classification (2000): Primary: 46T30; secondary: 46F30, 53B20.
منابع مشابه
Generalized Ritt type and generalized Ritt weak type connected growth properties of entire functions represented by vector valued Dirichlet series
In this paper, we introduce the idea of generalized Ritt type and generalised Ritt weak type of entire functions represented by a vector valued Dirichlet series. Hence, we study some growth properties of two entire functions represented by a vector valued Dirichlet series on the basis of generalized Ritt type and generalised Ritt weak type.
متن کاملOn Some Results in the Light of Generalized Relative Ritt Order of Entire Functions Represented by Vector Valued Dirichlet Series
In this paper, we study some growth properties of entire functions represented by a vector valued Dirichlet series on the basis of generalized relative Ritt order and generalized relative Ritt lower order.
متن کاملGENERALIZED SYMPLECTIC GEOMETRY ON THE FRAME BUNDLE OF A MANIFOLD† by
In this paper we develope the fundamentals of the generalized symplectic geometry on the bundle of linear frames LM of an n-dimensional manifold M that follows upon taking the R-valued soldering 1-form θ on LM as a generalized symplectic potential. The development is centered around generalizations of the basic structure equation df = −Xf ω of standard symplectic geometry to LM when the symplec...
متن کاملGeneralized Rings of Measurable and Continuous Functions
This paper is an attempt to generalize, simultaneously, the ring of real-valued continuous functions and the ring of real-valued measurable functions.
متن کاملFUZZY IDEALS OF NEAR-RINGS WITH INTERVAL VALUED MEMBERSHIP FUNCTIONS
In this paper, for a complete lattice L, we introduce interval-valued L-fuzzy ideal (prime ideal) of a near-ring which is an extended notion of fuzzy ideal (prime ideal) of a near-ring. Some characterization and properties are discussed.
متن کامل